Evaluation of the zeros of cross-product Bessel functions
نویسندگان
چکیده
منابع مشابه
Orthogonality, Lommel integrals and cross product zeros of linear combinations of Bessel functions
The cylindrical Bessel differential equation and the spherical Bessel differential equation in the interval [Formula: see text] with Neumann boundary conditions are considered. The eigenfunctions are linear combinations of the Bessel function [Formula: see text] or linear combinations of the spherical Bessel functions [Formula: see text]. The orthogonality relations with analytical expressions ...
متن کاملOn the Localization and Computation of Zeros of Bessel Functions
The topological degree of a continuous mapping is implemented for the calculation of the total number of the simple real zeros within any interval of the Bessel functions of first and second kind and their derivatives. A new algorithm, based on this implementation, is given for the localization and isolation of these zeros. Furthermore, a second algorithm is presented for their computation empl...
متن کاملLower Bounds for the Zeros of Bessel Functions
Let jp „ denote the nth positive zero of J , p > 0. Then / ■■> 7\'/2 Jp.n > Oln + P) ■ We begin by considering the eigenvalue problem (1) -(•*/)' + x~y = X2x2p-Xy, X,p>0, (2) y(a) =y(\) = 0, 0 < a < 1. For simplicity of notation we will set q = p~x. It is easily verified that the general solution of (1) is y(x) = CxJq(Xqxx/q) + C2Yq(Xqxx'q) and that the eigenvalues are given by Jq(Xq)Yq(Xqax/q)...
متن کاملOn a Product of Modified Bessel Functions
Let Iν and Kν denote the modified Bessel functions of the first and second kinds of order ν. In this note we prove that the monotonicity of u → Iν(u)Kν(u) on (0,∞) for all ν ≥ −1/2 is an almost immediate consequence of the corresponding Turán type inequalities for the modified Bessel functions of the first and second kinds of order ν. Moreover, we show that the function u → Iν(u)Kν(u) is strict...
متن کاملQuadrature formulae using zeros of Bessel functions as nodes
A gaussian type quadrature formula, where the nodes are the zeros of Bessel functions of the first kind of order α (<(α) > −1), was recently proved for entire functions of exponential type. Here we relax the restriction on α as well as on the function. Some applications are also given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1962
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1962-0146416-7